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ABSTRACT

In a recent paper, Satyanarayana and Prabhaker have presented
a new topological formula for evaluating exact reliability of
terminal—pair directed networks. Terms in the formula are
associated in a one—to—one fashion with certain acyclic sub—
graphs of the network, cyclic subgraphs being of no importance.
In their paper, however, the proof that cyclic subgraphs may
be ignored seems to be incomplete. We consider an alternate
proof of this fact.



A THEOREM CONCERNING CYCLIC DIRECTED GRAPHS
WITH APPLICATIONS TO NETWORK RELIABILITY

by

Randall R. Willie

In a recent incisive and original paper, Satyanarayana and

Prabhaker [1] have suggested a new and efficient method for calculating

exact system reliability for two terminal networks. The method applies

to a directed graph C with a single source vertex a and a sink vertex

t and with distinct initial and terminal vertices for each edge. Any

edge i~ may be working or failed, with probabilities p~ and 1 —

and the system is assumed to be working if and only if edges which have

not failed constitute at least one path from a to t . By path , we

mean a simple path; that is, a chain of edges directed from s to t

that involves no cycle; in the reliability literature such a path is

usually called a minimal path . (For simplicity, let us assume graph

vertices are not subject -to failure, though the concepts stated here

apply equally well to graphs where vertices also are “imperfect.”

In this case the system would be considered working if and only if there

were at least one simple path from s to t all of whose edges

and uertioea were working.)

A central point of Reference 111 is that if the inclusion—exclusion

fo rmula is utilized to determine the probability of all edges working in

at least one s — t path, terms in the formula may be associated with

particular subgraphs of C • More specifically , a term is the probability

that all edges are working in some set of paths , and these edges determine

a subgraph of C . Other terms may refer to the same group of edges and

henc. to the same subgraph. The idea is to collect terms common to each

subgraph and express the probability of the system working as 

-~
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(1) E dRPr {H)

where the stm ranges over all subgraphs H having edge sets that can —

be expressed as a union of a — t paths of G . Pr {H) is simply the

probability that all edges of H are working. The coefficient dH is

an integer , which is easily shown to be the difference between the number

of ways of representing the edge set of H as the union of an odd number

of a — t paths of C , and the number of ways of representing this set

as a union of an even number of paths. -

The ingenuity of the approach is due mainly to the fact that the

coefficients dH are either +1 , —l , or 0 . Satyanarayana and Prabhaker

show that d
li is +1 or —l for K an acyclic subgraph and give an

algorithm for finding each of these subgraphs and its dli value. They

also offer  a proof that d
~ 

— 0 for H a cyclic subgraph , so cyclic

p subgraphs may be ignored .

The proof that d
li 

— 0 for the cyclic subgraphs seems to involve

some technical points that require further clarification. In the present

discussion, we establish this fact by a somewhat different argument, an

argument that will hopefully be of some interest to the reader in its

own right.

Most of the terminology used here is the same as that of Reference [1].

The subgraphs of C that are of interest are ~—graphs; a 2—grap h is a

directed graph with source a and sink t in which every edge is in

at least one s — t path. Given a set P of paths with initial vertex

a and terminal vertex t , let Cr (P) be the graph consisting precisely

of the vertices and edges of paths in P . Cr (P) is then a p—graph , and

the set P is then called a formation cf Cr (P) . P is an odd formation



3

of Cr (P )  if the set P contains an odd number of paths and an even

formation if P contains an even number of paths.

If H is a p—g raph , then dli — 0 in formula (1) when the number of

odd formations of H is equal to the number of even formations. Our

argument that these numbers are equal for a cyclic p—graph involves two

lemmas and a theorein . Lemma 2 and the theorem give the main ideas ;

Lemma 1 provides a technical fact used in proving Lemma 2. A. number of

examples are included to illustrate the various concepts.

Letmna 1:

Let C be a directed graph and P~~ be the set of all paths f rom

vertex w to vertex z in C . If E is the set of edges common to

every path in 
~~~ 

and if P~~ contains at least two paths , then there

are at least two paths in whose only common edges are those in £

Examples:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(a)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(b)
a

FIGURE 1

In Figure 1 (a), E — 0 and paths (ab } and {cd} are edge disjoint.

In Figure 3. (b) , E — {b} and paths {abc} and {dbc} have only edge

b in common.

_______ a-_ -~~~~~~~~~~~~—--~~~~~~~
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Proof:

If P~~ has at least two paths , it is not d i f f icul t  to see that

no path in P can consist only of edges in E . Now consider the

graph Cr as a flow network with source w and sink z . Let all

edges in the set E have flow capacity 2 and all other edges of Gr

have capacity 1. Every w — z cut for the network has capacity at least

2, since no edges other than those in E are common to all paths.

However , removal from Cr of any edge in E interrupts all paths

from w to z , so the minimal w — z cut has capacity 2. Thus, there

exists an integer max flow having value 2. (See Reference [2].) No path

in consists only of edges in E , so this flow may be decomposed

into two flows, each having value 1 along a distinct path in

Because edges of these paths which are not in E have capacity 1,

these two paths are edge disjoint excep t for edges in E . J
ICGiven a cyclic p—graph G and a simple cycle C in C , let M

be a minli!al set of paths in C , such that the p—subgraph Cr (MC) of

C contains all edges of C . Let us call MC a minimal cover for C

Evidently, there may be more than one minimal cover for C , so let

i — 1, ... , k) be the family of all minimal covers for C . By

the minimality requirement , it is clear that M~ ~ for i # j

_______________  __________  - -
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Example:

FIGURE 2

The cycle C — {bdfe} has but one minimal cover, MC — ( {abdfh } ,(gfeb c}}

Note that paths {abc} and {gfh} each contain an edge of the cycle

but are not in MC

Lemma 2:

Let C be a cyclic p—graph. Then C contains a simple cycle C and

an a — t path pC such that P~ is not in any minimal cover for C

(The statement of the lemma is trivial when there is a path in G which

contains no edge of some cycle. However , as the previous example illus-

trates, for some cyclic p—graphs, every path might intersect every cycle.)

Proof:

We might as well, assume every s — t path of G has an edge in

co on with every cycle of C . Suppose P is an a — t pa th and let

w be the first vertex along P which is contained in some (simple)

cycle, say C ’ , and let w be the edge of C’ entering node w . Note

that w a , since otherwise edge w enters the source , which is not

valid fo r C a p—graph. Thus there is a subpath P5,~, of P directed

from vertex s to vertex w . The p—graph property leads us to conclude

also that w ~~ t , so the set P~~ of all subpaths from vertex w to

the sink t is not empty. But no path in 
~~ 

can involve a vertex of

-——- - ~~~- - — - -  - ‘ 

—---------------— ~~~~~~~~~~~~~~~~~~~~
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the path P~~, other than w since otherwise w would not then be the

first cycle vertex in the original path P . Each combination of P with a

subpath in ~~~ is thus a simple s — t path. Figure 3 roughly illus-

trates the situation.

P
SW

P
Wt

-

~~

FIGURE 3

Under the initial assumption that every s — t path of C has an

edge in common with every cycle of C , it turns out that P~~ must

contain at least two paths. The validity of the lenuna does not depend

on this fact, but our proof may be simplified by ignoring the case when

~
‘wt contains a single path. That contains at least two paths is

not diff icult to show, though we do not show it here.

Let E be the set of edges common to every path in P~~ . By

Lemma 1 above , there are at least two paths P~~ and P ’~ whose only

common edges are those in E • Since we have assumed that every s - t

path in G contains an edge of the cycle C’ , every path in must

pass through a vertex of C’ . Let x be the last vertex along C’ from

:1 vertex w , such that x is a vertex along path P ’~ or P ’~ . Without

loss of generality, suppose path P~~ passes through vertex x



— 

- 

7

Consider the cycle C , formed from cycle C ’ by replacing the cycle

path from vertex w to vertex ~ in C’ with the subpath of from

w to x . The cycle C passes through each of its vertices but once,

- so C is , in fac t , a simple cycle . (C could be the same as C’ .)

For convenience (or maybe incc~uvenience) , Figure 4 attempts to illustrate

the situation.

FIGURE 4

Finally, let ~~~~ — p p’’ , the s — t path formed by joining subpaths

P and P ’’ at vertex w . We maintain that is not in any minimalsw wt

cover for cycle C . To see this, let M~ be any minimal cover
Cof C and suppose P is a path in that contains edge w . If

v is the initial vertex of u , P

W may be expressed as PsvuPwt , where

P is some path from a to v and P £ P . Now note that the setsv Vt Vt

of cycle C edges in P~~ is a subset of the set E of edges common to

all paths in ~~ ~~ 
thus contains at least the edges of cycle C

in P~~ . Hence , pC cannot be in , since P’~ contains at least

one more edge of C than pC (namely , a). Since was an arbitrary

cover of C , the lemma follows.lI
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To fur ther clarify the construction of Lemma 2 , let us consider the

following example:,

FIGURE 5

Take ~~~ to consist of edge a , and ~ebdf) to be the cycle C’

The edge entering vertex w is then w — e . The set of paths 
~~

* 
is {{bc},{bdfh},{bifh}} . We can let P~~ — (bc } and P~~ be either

{bdfh} or {bifh} . Suppose 
~~~~~ 

— (bifh } . In this case, vertex x

is the initial vertex of edge w , i.e., x — v in the vertex labeling

of the proof. The new cycle C will then be {ebif} . There is only

a single minimal cover of C , namely, MC — ({abifh}, {gfebc}} . The path

pC — p p ’’ — {abc} contains only the cycle C edge b ; whereas,

— (gfebc} contains not only cycle edge b , but also edge e

Let be the family of all formations of a p—graph C and let

P be any a — t path in C . We partition the formations of

into families R(P) and (DH(P) I H a proper p—subgraph of C) as

follows: A particular formation P c is assigned to R(P) if either

(1) P does not contain path P , or (2) P contains path P but

P — {P} is also a formation of C • If P cannot be assigned to R(P)

_ _ _ _ _ _  _ _  .1
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then H = Cr (P — {P)) is a proper subgraph of G and P is assigned to

Note that the number of odd formations in R(P) equals the

number of even formations. As a rule, most of the families

— 
{D

H
(P) H a proper p—subgraph of C) will be empty. In some cases ,

R(P) may be empty.

If D
H

(P) is nonempty , let P11 
— {P -{P} I P c 1)

11(P)} P11
consists of all formations of the p—graph U , since if Q. is any for-

mation of H , Q U (P} must be a formation of C ; hence, Q~ U {P) c

and Q, c 
~ H

As an example of this partition , consider the graph of Figure 6.

5

~~~~~~~~~~~~~~~~~~

f

h

t

FIGURE 6

The paths are:

P ’ — (ag ) P4 — (bd fb}

{af h} P5 — {cedg}

P
3 — {bdg} — {ch}

The set 
~ G of forma tions of C is

I

L
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p1 — {p 2p3p5) p5 — (plp2p4p5)

— {p1p2p3p5} p6 — {plp3plêp5}

1 4 5  7 2 3 4 5r — { P P P )  P — { p p p p )

- 
- 

— {p2p4p5} p8 —

P9 
— {P2p3P5p6 } P13 

— {P1P2P4P5P6)

p10 
— {p 1p2p3p5p6} P14 

— {p’p3p4p5p6)

P11 — {P1P4P5P6) P15 
— {P2P3P4P5P6}

J,12 
— ~~~~~~~~~ p16 {p 1p2p3p4p5p6}

Let us choose P3 and partition according to this path:

a ~p3 p4 p5 p1l p12 pl3~
R(P 3) — -

~~
p
6

p
7

p
8

p
14

p
l5

pl6S

Note the first 8 formations in R(P 3) do not contain P3 
, but the

last 8 do. Finally, the only proper p—subgraph H for which D
H

(P3)

is nonempty is that of Figure ~: for this subgraph, 
~~~~~~ 

—

{p]’p2 p9 p’o} .

FIGURZ 7

—•.= -.- .--- ——-- ———.. , - . -,-- — -—-.-- - - - - -  ~~~~
-—-
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Theorem:

Let C be a cyclic p—graph. The number of odd formations of C

is equal to the number of even formations.

- Proof:

We will use induction on the number of paths of C

It is easy to verify that there are no cyclic p—graphs having less

than 4 paths, so let C have n — 4 paths. By Lemma 2, C has a cycle

C and a path P~ that is contained in no minimal cover for that

cycle. Partition the family P~ of formations as indicated above,

using the path PC . We maintain that D(PC) is empty for every

p—subgraph H of G . To see this, note that if P c D11
(PC) , there

is at least one minimal cover in P — {pC} , since pC is in

no . But then H Cr (P — {pC}) is cyclic, which is not possible

because H has 3 or less paths. Thus P~ — ~~(pC) , and since the

number of even formations of C in R(P C) is equal to the number of

odd format ions, the theorem is tru e when G has 4 paths *

Now suppose the theorem is true for all cyclic p—graphs having m

paths , 4 < m c n — 1 . Let G be a cyclic p—graph having n paths .

By Lemma 2 again, C has a cycle C and a path pC that is in no minimal

cover for C . Partitioning the family P
C 

of all formations of C

we get families R(PC) and (LH(P
C) I H a proper p—subgraph of G)

If i)~ (P C) is empty for all p—subgrapbs H of C , then P~ — 1(pC)

as above , and the number of even formations of C equals the number of

odd formations. Her e , suppose J) (p C) is nonsapty for some H . Since

is contained in no , H must be cyclic and B contains n — 1

or less paths. By the induction assumption, the family P~ of all

_ _ _ _ _ _ _ _ _ _  - -
~~~~~~~~~~ .—. - - ~~~~~~~~~~~~~~~~~~ -_ __
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formations of H has the same number of even as odd formations. Each

formation of C in D11(P
C) can be produced by appending pC to one

of the formations in P~ . Hence , for every nonempty family D11(P C)

the number of even formations in D ( P C) equals the number of odd

formations. Thus, each family in the partition of is either empty

or contains the same number of even as odd formations , and the theorem

follows.It

- - 

i _
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